When Almost Is Not Even Close: Remarks on the Approximability of HDTP

Tarek R. Besold Robert Robere

Al Research Group, Institute of Cognitive Science, University of Osnabrück

University of Toronto

01. August 2013

- Parameterized Complexity & Approximation Theory
- e Heuristic-Driven Theory Projection (HDTP)
- Complex Analogies: A Parameterized Analysis of HDTP
- Almost Right: An Approximability Analysis of HDTP
- Onclusion and Future Work

Parameterized Decision Problem

An instance of a <u>parameterized</u> decision problem \mathcal{P} is a tuple (x, k), where $x \in \{0, 1\}^*$ is a string describing the problem and $k \in \mathbb{Z}$, which is called the <u>parameter</u> of the problem (codifying other aspects of the problem besides *n*).

Fixed Parameter Tractability (FPT)

A parameterized decision problem \mathcal{P} is fixed parameter tractable, written $\mathcal{P} \in \text{FPT}$, if it is solvable in time bounded by $f(k) \cdot |x|^{O(1)}$, where f(k) is some computable function of the parameters and $|x|^{O(1)}$ denotes a polynomial of the length of the input.

As suggested by notation, let FPT denote the class of all fixed parameter tractable problems.

W[1]-membership & W[1]-hardness

W[1] is the class of problems solvable by constant depth combinatorial circuits with at most 1 gate with unbounded fan-in on any path from an input gate to an output gate.

A parameterized problem \mathcal{P} is W[1]-hard if every problem in W[1] is reducible to \mathcal{P} under a parameterized reduction.

 $W[1] \neq \mathsf{FPT}$ can be seen as analogous to $\mathsf{P} \neq \mathsf{NP}$ in classical complexity.^1

¹FPT = W[0] and W[*i*] \subseteq W[*j*] for all *i* \leq *j* (most likely: W[*i*] \subset W[*j*]).

Approximability Classes

During the course of this presentation, let...

- ...PTAS denote the class of all NP optimization problems that admit a polynomial-time approximation scheme.
- ...APX be the class of NP optimization problems allowing for constant-factor approximation algorithms.
- ...APX-poly be the class of NP-optimization problems allowing for polynomial-factor approximation algorithms.

Please note that PTAS \subseteq APX \subseteq APX-*poly* (with each inclusion being proper in case P \neq NP).

- Parameterized Complexity & Approximation Theory ✓
- e Heuristic-Driven Theory Projection (HDTP)
- Complex Analogies: A Parameterized Analysis of HDTP
- Almost Right: An Approximability Analysis of HDTP
- Onclusion and Future Work

Heuristic-Driven Theory Projection (HDTP)

- Computing analogical relations and inferences (domains given as many-sorted first-order logic representation/many-sorted term algebras) using a generalization-based approach.
- Base and target of analogy defined in terms of axiomatisations, i.e., given by a finite set of formulae.
- Aligning pairs of formulae by means of **anti-unification** (extending classical Plotkin-style first-order anti-unification to a restricted form of higher-order anti-unification).
- Proof-of-concept applications in modeling mathematical reasoning and concept blending in mathematics.

Heuristic-Driven Theory Projection (2)

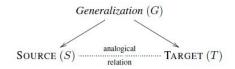
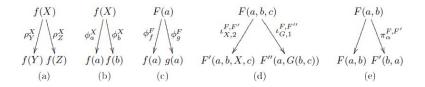


Figure : Analogy-making in HDTP.

Anti-Unification


- Dual to the unification problem (see, e.g., logic programming or automated theorem proving).
- Generalizing terms in a meaningful way, yielding for each term an **anti-instance** (distinct subterms replaced by variables).
- Goal: Finding the most specific anti-unifier.
- Plotkin: For a proper definition of generalization, for a given pair of terms there always is exactly one least general generalization (up to renaming of variables).
- Problem: Structural commonalities embedded in different contexts possibly not accessible by first-order anti-unification.

Restricted Higher-Order Anti-Unification

- First-order terms extended by **introducing variables taking arguments** (first-order variables become variables with arity 0), making a term either a first-order or a higher-order term.
- Class of substitutions restricted to (compositions of) the following four cases:

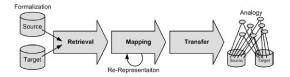
Examples of higher-order anti-unifications:

Heuristic-Driven Theory Projection (6)

Solar System	Rutherford Atom
sorts real, object, time entities sun: object, planet: object functions mass: object \rightarrow real \times {kg} dist: object \times object \times time \rightarrow real \times {N} gravity: object \times object \times time \rightarrow real \times {N} centrifugal: object \times object \times time \rightarrow real \times {N} predicates revolves_around: object \times object facts $\alpha_1: mass(sun) > mass(planet)$ $\alpha_2: mass(planet) > 0$ $\alpha_3: \forall t: time: gravity(planet, sun, t) > 0$ laws $\alpha_5: \forall t: time, o_1: object, o_2: object:$ $dist(o_{(1, o_2, t)} > 0 \land gravity(o_{(1, o_2, t)}) > 0$ \rightarrow centrifugal($o_{(1, o_2, t)} = -gravity(o_{(1, o_2, t)}) > 0 \land$ $centrifugal(o_{(1, o_2, t)} < 0\rightarrow revolves around(o_{(1, o_2)}) \wedge dist(o_{(1, o_2, t)} > 0 \land\rightarrow revolves around(o_{(1, o_2)}) \wedge dist(o_{(1, o_2, t)} > 0$	sorts real, object, time entities nucleus : object, electron : object functions mass : object \rightarrow real \times {kg} dist : object \times object \times time \rightarrow real \times {m} coulomb : object \times object \times time \rightarrow real \times {N} facts β_1 : mass(nucleus) $>$ mass(electron) β_2 : mass(electron) > 0 β_3 : $\forall t$: time : coulomb(electron, nucleus, t) > 0 β_4 : $\forall t$: time : dist(electron, nucleus, t) > 0

Heuristic-Driven Theory Projection (7)

types real. object. time constants X: object, Y: objectfunctions mass: $object \rightarrow real \times \{kq\}$ $dist: object \times object \times time \rightarrow real \times \{m\}$ $F: object \times object \times time \rightarrow real \times \{N\}$ centrifugal: $object \times object \times time \rightarrow real \times \{N\}$ predicates revolves around : $object \times object \times object$ facts $\gamma_1: mass(X) > mass(Y)$ $\gamma_2: mass(Y) > 0$ $\gamma_3: \forall t: time: F(X, Y, t) > 0$ $\gamma_4: \forall t: time: dist(X, Y, t) > 0$ laws γ_{5*} : $\forall t: time, o_1: object, o_2: object:$ $dist(o_1, o_2, t) > 0 \land F(o_1, o_2, t) > 0$ $\rightarrow centrifugal(o_1, o_2, t) = -F(o_1, o_2, t)$ $\gamma_6 *$: $\forall t$: time, o_1 : object, o_2 : object: $0 < mass(o_1) < mass(o_2) \land dist(o_1, o_2, t) > 0 \land centrifugal(o_1, o_2, t) < 0$ \rightarrow revolves around(o_1, o_2)


- Parameterized Complexity & Approximation Theory ✓
- ❷ Heuristic-Driven Theory Projection (HDTP) ✓
- Complex Analogies: A Parameterized Analysis of HDTP
- Almost Right: An Approximability Analysis of HDTP
- Onclusion and Future Work

Complexity of HDTP (1)

HDTP is naturally split into two mechanisms:

- Analogical matching of input theories.
- Re-representation of input theories by deduction in FOL.

- \Rightarrow Re-representation is undecidable (undecidability of FOL).
- \Rightarrow Focus on mechanism for analogical matching.

Problem 1. F Anti-Unification **Input**: Two terms f, g, and a natural $k \in \mathbb{N}$ **Problem**: Is there an anti-unifier *h*, containing at least *k* variables, using only **renamings and fixations**?

Problem 2. FP Anti-Unification

Input: Two terms f, g, and naturals $I, m, p \in \mathbb{N}$.

Problem: Is there an anti-unifier *h*, containing at least *l* 0-ary variables and at least *m* higher arity variables, and two substitutions σ , τ using only renamings, finations and at most *m* and *m* are the transformed at *m* and *m* are transformed at *m* are transformed at *m* and *m* are transformed at *m* are transformed at *m* and *m* are transformed at *m* are transformed at *m* are transformed at *m* and *m* are transformed at *m* are transformed at *m* and *m* are transformed at *m* are transformed at *m* are transformed at *m* are tran

fixations, and **at most** *p* **permutations** such that $h \xrightarrow{\sigma} f$ and $h \xrightarrow{\tau} g$?

Problem 3. FPA Anti-Unification

Input: Two terms f, g and naturals $I, m, p, a \in \mathbb{N}$.

Problem: Is there an anti-unifier *h*, containing at least *l* 0-ary variables, at least *m* higher arity variables, and two substitutions σ , τ using renamings, fixations, at most *p* permutations, and **at most** *a* **argument insertions** such that $h \xrightarrow{\sigma} f$ and $h \xrightarrow{\tau} g$?

Complexity of HDTP (Higher-Order Anti-Unification)

- **I** F Anti-Unification is solvable in polynomial time.
- Let *m* be the maximum number of higher arity variables and *p* be the maximum number of permutations applied. Then FP
 Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {*m*,*p*}.
- Let *r* be the maximum arity and *s* be the maximum number of subterms of the input terms. Then **FP Anti-Unification is in** FPT w.r.t. parameter set {*s*, *r*, *p*}.
- FPA Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p, a}.

- Parameterized Complexity & Approximation Theory ✓
- euristic-Driven Theory Projection (HDTP) √
- Output Complex Analogies: A Parameterized Analysis of HDTP √
- Almost Right: An Approximability Analysis of HDTP
- Onclusion and Future Work

- FP Anti-Unification W[1]-hard to compute for parameter set *m*, *p* (*m* number of higher-arity variables, *p* number of permutations).
 ⇒ No polynomial-time algorithm computing "sufficiently complex" generalizations (i.e., with lower bound on number of higher-arity variables), upper bounding number of permutations (W[1]-hardness for single permutation).
- What if one considers generalizations which merely approximate the "optimal" generalization in some sense?

Complexity of a Substitution

The complexity of a basic substitution σ is defined as

 $C(s) = \begin{cases} 0, & \text{if } \sigma \text{ is a renaming.} \\ 1, & \text{if } \sigma \text{ is a fixation or permutation.} \\ k+1, & \text{if } \sigma \text{ is a } k\text{-ary argument insertion.} \end{cases}$ The complexity of a restricted substitution $\sigma = \sigma_1 \circ \cdots \circ \sigma_n$ (i.e., the composition of any sequence of unit substitutions) is the sum of the composed substitutions: $C(\sigma) = \sum_{i=1}^n C(\sigma_i).$

Consider problem of finding generalization which **maximizes** complexity over all generalizations:

- Complex generalization would contain "most information" present over all of the generalizations chosen (i.e., maximizing the "information load").
- Using approximability results on MAXCLIQUE:

Approximation Complexity of HDTP Analogy-Making

FP anti-unification is not in APX (i.e., is hard for APX-poly).

- Parameterized Complexity & Approximation Theory ✓
- Heuristic-Driven Theory Projection (HDTP)
 √
- Output Complex Analogies: A Parameterized Analysis of HDTP √
- Almost Right: An Approximability Analysis of HDTP
- Onclusion and Future Work

Conclusion and Future Work

- Analogy-making in HDTP is widely not tractable or approximable!
- Taking the Tractable AGI Thesis (see talk tomorrow afternoon!) into account, the suitability of HDTP as basis for a general model for high-level cognitive capacities or a general cognitive architecture seems questionable.
- Main question(s) for future research:
 - How can the computation of generalizations via restricted higher-order anti-unification be constrained in a meaningful way as to remain polynomially-solvable?
 - Similarly: How can the underlying KR formalism be restrained/modified?
 - How can the undecidability of the re-representation mechanism directly be addressed (and mitigated)?

Contact the authors: tbesold@uos.de or robere@cs.toronto.edu.

